High Throughput Nanoliposome Formation Using 3D Printed Microfluidic Flow Focusing Chips

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-b...

متن کامل

High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.

Liposomes represent a leading class of nanoparticles for drug delivery. While a variety of techniques for liposome synthesis have been reported that take advantage of microfluidic flow elements to achieve precise control over the size and polydispersity of nanoscale liposomes, with important implications for nanomedicine applications, these methods suffer from extremely limited throughput, maki...

متن کامل

Wax-bonding 3D microfluidic chips.

We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax can real...

متن کامل

High Throughput Fluorescence Based Flow Cytometer Using 3d Microfluidics for Parallel Sheath Flow Focusing and Embeded High N.a. Microlens

We report a high throughput microfluidic fluorescence based flow cytometer with parallel sheath flow focusing in 32 channels using only 2 inlets. A detection throughput of 7000 beads/sec in each channel and 224,000 beads/sec for 32 channels has been accomplished. This fluorescence flow cytometer is realized by utilizing 3D soft lithography microfabrication technique to achieve multilayer PDMS s...

متن کامل

3D Printed Multimaterial Microfluidic Valve

We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to prev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Materials Technologies

سال: 2019

ISSN: 2365-709X,2365-709X

DOI: 10.1002/admt.201800511